首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9823篇
  免费   112篇
  国内免费   92篇
安全科学   273篇
废物处理   459篇
环保管理   1243篇
综合类   1192篇
基础理论   2667篇
环境理论   2篇
污染及防治   2767篇
评价与监测   709篇
社会与环境   667篇
灾害及防治   48篇
  2022年   96篇
  2021年   75篇
  2020年   66篇
  2019年   72篇
  2018年   145篇
  2017年   139篇
  2016年   229篇
  2015年   164篇
  2014年   237篇
  2013年   742篇
  2012年   296篇
  2011年   441篇
  2010年   362篇
  2009年   395篇
  2008年   470篇
  2007年   475篇
  2006年   422篇
  2005年   366篇
  2004年   323篇
  2003年   375篇
  2002年   324篇
  2001年   503篇
  2000年   328篇
  1999年   191篇
  1998年   136篇
  1997年   129篇
  1996年   138篇
  1995年   162篇
  1994年   125篇
  1993年   102篇
  1992年   123篇
  1991年   118篇
  1990年   130篇
  1989年   130篇
  1988年   94篇
  1987年   87篇
  1986年   65篇
  1985年   90篇
  1984年   89篇
  1983年   86篇
  1982年   82篇
  1981年   73篇
  1980年   61篇
  1979年   68篇
  1977年   53篇
  1976年   48篇
  1975年   53篇
  1974年   51篇
  1973年   53篇
  1970年   45篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
ABSTRACT: According to a concept known as partial area hydrology, watershed areas are separated into hydrologically active and passive subareas. The literature relating to the development of the partial area concept is reviewed briefly and the relationship of partial area hydrology to geology, soils, and micrometeorology is illustrated. The potential application of partial area hydrology is discussed with respect to present hydrologic techniques, future hydrologic models, urban hydrology, water quality, and water management. Suggestions for identifying and delineating the contributing areas are discussed.  相似文献   
992.
ABSTRACT. The Spring 1973 Mississippi River flood was investigated using remotely sensed data from ERTS-1. Both manual and automatic analyses of the data indicate that ERTS-I is extremely useful as a regional tool for flood management. Quantitative estimates of area flooded were made in St. Charles County, Missouri and Arkansas. Flood hazard mapping was conducted in three study areas along the Mississippi River using pre-flood ERTS-1 imagery enlarged to 1:250,000 and 1:100,000 scale. The flood prone areas delineated on these maps correspond to areas that would be inundated by significant flooding (approximately the 100 year flood). The flood prone area boundaries were generally in agreement with flood hazard maps produced by the U. S. Army Corps of Engineers and U. S. Geological Survey although the latter are somewhat more detailed because of their larger scale. Initial results indicate that ERTS-1 digital mapping of flood prone areas can be performed at 1:62,500 which is comparable to some conventional flood hazard map scales.  相似文献   
993.
994.
Odor pollution is a major problem facing mushroom [Agaricus bisporus (Lange) Imbach] compost production. Techniques for quantifying mushroom composting odors are needed to assess the effectiveness of odor control measures. Odor samples were obtained in nalophane bags from 11 mushroom composting sites. Samples were collected 0.2 m downwind from the pre-wetting heaps (aerated or unaerated) of raw composting ingredients (wheat straw, poultry and horse manures, and gypsum) and subsequent Phase I composting windrows or aerated tunnels. The odor concentrations (OCs) of the samples were assessed using serial dilution olfactometry and the chemical composition of the samples was determined using gas chromatography-mass spectrometry (GC-MS), both 24 h after sampling. Gas detector tubes were used for on-site measurement of gaseous compounds. Odorants that exceeded their published olfactory detection thresholds by the greatest order of magnitude, in decreasing order, were: H2S, dimethyl sulfide (DMS), butanoic acid, methanethiol, and trimethylamine. Concentrations of NH3 were not significantly correlated with OC, and they were not significantly affected by the use of aeration. Aeration reduced the OC and the combined H2S + DMS concentrations by 87 and 92%, respectively. There was a very close correlation (r = 0.948, P < 0.001) between the OC of bag samples and the combined H2S + DMS concentrations, measured on-site with detector tubes. This relationship was unaffected by the NH3 concentration or the type of compost: aerated or unaerated, pre-wet or Phase I, poultry manure-based or horse and poultry manure-based compost. Prediction of the OC will enable rapid and low-cost identification of odor sources on mushroom composting sites.  相似文献   
995.
Phosphorus (P) runoff from fields fertilized with swine (Sus scrofa domesticus) manure may contribute to eutrophication. The objective of this study was to evaluate the effect of aluminum sulfate (alum) and aluminum chloride applications to swine manure on P runoff from small plots cropped to tall fescue (Festuca arundinacea Shreb.). There were six treatments in this study: (i) unfertilized control plots, (ii) untreated manure, (iii) manure with alum at 215 mg Al L(-1), (iv) manure with aluminum chloride at 215 mg Al L(-1), (v) manure with alum at 430 mg Al L(-1), and (vi) manure with aluminum chloride at 430 mg Al L(-1). Manure application rates were equivalent to approximately 125 kg N ha(-1). Alum and aluminum chloride additions lowered soluble reactive phosphorus (SRP) levels from about 130 mg P L(-1) to approximately 30 mg P L(-1) at low rates. At high rates, SRP levels in swine manure were around 1 mg P L(-1). Soluble reactive P concentrations in runoff were 5.50, 3.66, 3.00, 0.87, 0.87, and 0.55 mg P L(-1), for normal manure, low alum, low aluminum chloride, high alum, high aluminum chloride, and unfertilized control plots, respectively. Hence, high alum and aluminum chloride reduced SRP concentrations in runoff by 84% and were not statistically different from SRP concentrations in runoff from unfertilized control plots. These data indicate that treating swine manure with alum or aluminum chloride could result in significant reductions in nonpoint-source P runoff.  相似文献   
996.
Historical streamflow and concentration data were used in regression models to estimate the annual flux of nitrogen (N) to the Gulf of Mexico and to determine where the nitrogen originates within the Mississippi Basin. Results show that for 1980-1996 the mean annual total N flux to the Gulf of Mexico was 1,568,000 t yr-1. The flux was about 61% nitrate N, 37% organic N, and 2% ammonium N. The flux of nitrate N to the Gulf has approximately tripled in the last 30 years with most of the increase occurring between 1970 and 1983. The mean annual N flux has changed little since the early 1980s, but large year-to-year variations in N flux occur because of variations in precipitation. During wet years the N flux can increase by 50% or more due to flushing of nitrate N that has accumulated in the soils and unsaturated zones in the basin. The principal source areas of N are basins in southern Minnesota, Iowa, Illinois, Indiana, and Ohio that drain agricultural land. Basins in this region yield 1500 to more than 3100 kg N km-2 yr-1 to streams, several times the N yield of basins outside this region.  相似文献   
997.
Removal of uranium(VI) from contaminated sediments by surfactants   总被引:1,自引:0,他引:1  
Uranium(VI) sorption onto a soil collected at the Melton Branch Watershed (Oak Ridge National Laboratory, TN) is strongly influenced by the pH of the soil solution and, to a lesser extent, by the presence of calcium, suggesting specific chemical interactions between U(VI) and the soil matrix. Batch experiments designed to evaluate factors controlling desorption indicate that two anionic surfactants, AOK and T77, at concentrations ranging from 60 to 200 mM, are most suitable for U(VI) removal from acidic soils such as the Oak Ridge sediment. These surfactants are very efficient solubilizing agents at low uranium concentrations: ca. 100% U(VI) removal for [U(VI)]o,sorbed = 10(-6) mol kg-1. At greater uranium concentrations (e.g., [U(VI)]o,sorbed = ca. 10(-5) mol kg-1), the desorption efficiency of the surfactant solutions increases with an increase in surfactant concentration and reaches a plateau of 75 to 80% of the U(VI) initially sorbed. The most probable mechanisms responsible for U(VI) desorption include cation exchange in the electric double layer surrounding the micelles and, to a lesser extent, dissolution of the soil matrix. Limitations associated with the surfactant treatment include loss of surfactants onto the soil (sorption) and greater affinity between U(VI) and the soil matrix at large soil to liquid ratios. Parallel experiments with H2SO4 and carbonate-bicarbonate (CB) solutions indicate that these more conventional methods suffer from strong matrix dissolution with the acid and reduced desorption efficiency with CB due to the buffering capacity of the acidic soil.  相似文献   
998.
Two different humic acids (HA) and a fulvic acid (FA) were chemically immobilized to a high performance liquid chromatography (HPLC) silica column material. The immobilization was performed by binding amino groups in HA/FA to the free aldehyde group in glutardialdehyde attached to the silica gel. The HPLC column materials were compared with a blank column material made by applying the same procedure but without immobilizing HA or FA. Also, a column was made by binding carbonyl groups in HA to amino groups attached to the silica gel. The humic substances were selected to secure appropriate variation of their structural features. The retention factors of 45 polycyclic aromatic compounds (PAC) to the four columns were determined by HPLC. The advantage of the technique is a large number of compounds can easily be studied. The binding procedure does not appear to cause a drastic selection between the HA molecules. The k' values obtained for the two Aldrich HA columns agree in general reasonably. The retention or sorption of the compounds increased with the size of the PAC and the number of lipophilic substituents, but decreased when polar substituents were present. The PAC retention was much stronger to the two HA columns than to the FA and blank column, both for hydrophobic polycyclic aromatic hydrocarbons (PAH) and the polar PAC. Other factors impacting the PAC binding may be specific interactions with HA and the ionic strength of the aqueous phase. The technique has been applied to do direct determinations of Koc.  相似文献   
999.
Atrazine (6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine) and metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide] have been found with increasing occurrence in rivers and streams. Their continued use will require changes in agricultural practices. We compared water quality from four crop-tillage treatments: (i) conventional moldboard plow (MB), (ii) MB with ryegrass (Lolium multiflorum Lam.) intercrop (IC), (iii) soil saver (SS), and (iv) SS + IC; and two drainage control treatments, drained (D) and controlled drainage-subirrigation (CDS). Atrazine (1.1 kg a.i. ha-1), metribuzin [4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazine-5(4H)-one] (0.5 kg a.i. ha-1), and metolachlor (1.68 kg a.i. ha-1) were applied preemergence in a band over seeded corn (Zea mays L.) rows. Herbicide concentration and losses were monitored from 1992 to spring 1995. Annual herbicide losses ranged from < 0.3 to 2.7% of application. Crop-tillage treatment influenced herbicide loss in 1992 but not in 1993 or 1994, whereas CDS affected partitioning of losses in most years. In 1992, SS + IC reduced herbicide loss in tile drains and surface runoff by 46 to 49% compared with MB. The intercrop reduced surface runoff, which reduced herbicide transport. Controlled drainage-subirrigation increased herbicide loss in surface runoff but decreased loss through tile drainage so that total herbicide loss did not differ between drainage treatments. Desethyl atrazine [6-chloro-N-(1-methylethyl)-1,3,5-triazine-2,4-diamine] comprised 7 to 39% of the total triazine loss.  相似文献   
1000.
The rate of volatilisation of the formulated herbicide triallate was investigated in a wind tunnel under controlled wind-speed conditions. An experimental set-up is described which allows the monitoring of wind speed (w.s.), soil-water content, and the temperature of air and soil. A system controlling soil-water content is also described. The influence of air velocity and soil texture was investigated measuring the cumulative volatilisation losses of triallate from soil. The herbicide volatilisation losses after application ranged from 40% at 3 m/s to 53% at 9 m/s for loam soil and from 60% at 3 m/s to 73% at 9 m/s for sandy soil.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号